Risk Factors for Human Infection with Avian Influenza A H5N1, Vietnam, 2004
Risk Factors for Human Infection with Avian Influenza A H5N1, Vietnam, 2004
To evaluate risk factors for human infection with influenza A subtype H5N1, we performed a matched case-control study in Vietnam. We enrolled 28 case-patients who had laboratory-confirmed H5N1 infection during 2004 and 106 age-, sex-, and location-matched control-respondents. Data were analyzed by matched-pair analysis and multivariate conditional logistic regression. Factors that were independently associated with H5N1 infection were preparing sick or dead poultry for consumption ≤7 days before illness onset (matched odds ratio [OR] 8.99, 95% confidence interval [CI] 0.98-81.99, p = 0.05), having sick or dead poultry in the household ≤7 days before illness onset (matched OR 4.94, 95% CI 1.21-20.20, p = 0.03), and lack of an indoor water source (matched OR 6.46, 95% CI 1.20-34.81, p = 0.03). Factors not significantly associated with infection were raising healthy poultry, preparing healthy poultry for consumption, and exposure to persons with an acute respiratory illness.
The first indication that the current epizootic of highly pathogenic avian influenza subtype H5N1 (influenza A H5N1) would have a serious effect on human heath occurred in early 2004, when influenza H5N1 was identified in a series of patients admitted to the National Pediatric Hospital in Hanoi with severe viral pneumonia. Since then, large-scale and global spread of the disease in poultry has been accompanied by sporadic cases in humans. Despite many millions of avian infections and >200 human cases, knowledge of influenza H5N1 remains inadequate. Neither how these viruses are transmitted to humans nor, consequently, the most effective way to reduce the risk for infection is fully understood. Descriptive and analytic epidemiologic studies conducted in Hong Kong Special Administrative Region, People's Republic of China, during the 1997 outbreak of influenza H5N1 identified visiting a live bird market as a risk factor. However, the current outbreak encompasses different viruses and different sociodemographic, farming, and behavioral contexts. Several seroprevalence studies of healthcare workers and a case-control study from Thailand have been published from the current outbreak, but further work is needed to develop and test hypotheses on the mechanism of transmission of influenza H5N1 to humans. To clarify the source and mode(s) of transmission of influenza H5N1 to humans and to guide the control and prevention of influenza, we conducted a case-control study of all cases of avian influenza H5N1 identified in humans in Vietnam in 2004.
To evaluate risk factors for human infection with influenza A subtype H5N1, we performed a matched case-control study in Vietnam. We enrolled 28 case-patients who had laboratory-confirmed H5N1 infection during 2004 and 106 age-, sex-, and location-matched control-respondents. Data were analyzed by matched-pair analysis and multivariate conditional logistic regression. Factors that were independently associated with H5N1 infection were preparing sick or dead poultry for consumption ≤7 days before illness onset (matched odds ratio [OR] 8.99, 95% confidence interval [CI] 0.98-81.99, p = 0.05), having sick or dead poultry in the household ≤7 days before illness onset (matched OR 4.94, 95% CI 1.21-20.20, p = 0.03), and lack of an indoor water source (matched OR 6.46, 95% CI 1.20-34.81, p = 0.03). Factors not significantly associated with infection were raising healthy poultry, preparing healthy poultry for consumption, and exposure to persons with an acute respiratory illness.
The first indication that the current epizootic of highly pathogenic avian influenza subtype H5N1 (influenza A H5N1) would have a serious effect on human heath occurred in early 2004, when influenza H5N1 was identified in a series of patients admitted to the National Pediatric Hospital in Hanoi with severe viral pneumonia. Since then, large-scale and global spread of the disease in poultry has been accompanied by sporadic cases in humans. Despite many millions of avian infections and >200 human cases, knowledge of influenza H5N1 remains inadequate. Neither how these viruses are transmitted to humans nor, consequently, the most effective way to reduce the risk for infection is fully understood. Descriptive and analytic epidemiologic studies conducted in Hong Kong Special Administrative Region, People's Republic of China, during the 1997 outbreak of influenza H5N1 identified visiting a live bird market as a risk factor. However, the current outbreak encompasses different viruses and different sociodemographic, farming, and behavioral contexts. Several seroprevalence studies of healthcare workers and a case-control study from Thailand have been published from the current outbreak, but further work is needed to develop and test hypotheses on the mechanism of transmission of influenza H5N1 to humans. To clarify the source and mode(s) of transmission of influenza H5N1 to humans and to guide the control and prevention of influenza, we conducted a case-control study of all cases of avian influenza H5N1 identified in humans in Vietnam in 2004.
Source...