Acute Kidney Injury Due to Anti-tuberculosis Drugs
Acute Kidney Injury Due to Anti-tuberculosis Drugs
Acute kidney injury is a rare complication in patients on anti-TB therapy. Several reports, summarized in four review articles, address this rare event and most reveal rifampicin as the most common responsible drug. By retrospective analysis of 2322 TB patients, this study has several important findings. First, the incidence of AKI in patients on anti-TB therapy is much higher in Taiwan (7.1%) than in previous reports (0.05%), with a recovery rate of 73% (>80% in literature). Second, rifampin is successfully re-introduced or continued without interruption in 87% of TB patients with AKI recovered. Third, factors predicting recovery from AKI are clinical symptoms at the onset of AKI, including fever, skin rash, and GI disturbance, but not AKI stage, age, and co-morbidities.
The definition of rifampin-induced renal impairment varies in previous studies. The exact incidence rate is unknown. Only the review article from Romania reports that 0.05% of patients receiving rifampin (mean age, 45 years) develop acute renal failure, defined as elevated serum creatinine >44.2 μmol/L or >20% of baseline in two weeks. Using the criteria established by the AKIN, AKI during anti-TB treatment in the current study is not uncommon (7.1%), probably reflecting the old age (mean age, 65.9 years) and high prevalence of systemic co-morbidity, such as DM and CKD, that can predispose to more kidney damage.
The findings that 60% of patients are older than 65 years and 80% have positive mycobacterial culture are similar to the country-wide epidemiologic data reported by the Taiwan Center of Disease Control (TCDC) (age >65 years, 52%; culture-positive rate, 80%), implying that the study subjects here are representative of the whole TB population in Taiwan. With the global trend of aging, determining the local incidence rate of AKI is necessary to improve the quality of TB care and to determine the frequency and duration of monitoring.
The mechanism of rifampin-induced AKI is not well established. Several studies suggest that it is either a type II or type III hypersensitivity reaction induced by rifampin antigens in which anti-rifampin antibodies form immune complexes that are deposited in renal vessels, the glomerular endothelium, and the interstitial area. These reactions cause two different pathologic changes in the kidneys. The deposition of immune complexes in the vessels causes vascular constriction and tubular ischemia, leading to acute tubular necrosis, whereas the deposition of immune complexes in the interstitial area leads to acute interstitial nephritis. Renal biopsies performed in several studies with a total of 106 patients reveal that the most common pathologies are acute interstitial nephritis (54%) and acute tubular necrosis (38%). The immune reaction is indirect proof by the Romania study of a positive correlation between the duration of anuria and serum gamma-globulin level.
In previous studies, more than 80% of patients recover from AKI within 120 days. The recovery rate in the present study (73%) is slightly lower, probably due to the older age and the presence of underlying co-morbidities. Because AKIN stage includes mild renal impairment, some patients who improve their renal function but still fulfill the stage I criteria of AKI may be classified as "unrecovered". One report reveals that age may predict delayed renal function recovery in patients with drug-induced acute interstitial nephritis. However, the present study has different findings. The recovery time of AKI-recovered patients is similar to those of previous reports, with 90% recovery within 100 days. Thus, close monitoring and avoidance of further kidney injury for three-to-four months after the onset of AKI during anti-TB treatment are necessary.
The prognostic factors of AKI during anti-TB treatment are rarely investigated. Only the duration of anuria and leukocytosis have been associated with renal recovery. The current study lacks data on the duration of anuria and few patients (n = 33) underwent urinalysis. After including clinical symptoms, demographic data, and laboratory results into the statistical model, the multivariate Cox regression analysis reveals that the presence of fever, rash, and GI disturbance at the onset of AKI are associated with better renal recovery. Because fever and skin rash are common manifestation of acute interstitial nephritis, the underlying pathophysiology of AKI in patients with these two symptoms is more likely to be acute interstitial nephritis. Since acute interstitial nephritis has better prognosis than acute tubular necrosis, these patients also have better renal recovery. For patients with GI disturbance, AKI may be partly due to dehydration and hypo-perfusion. With careful fluid management, renal impairment may be quickly overcome.
More than 50% of the AKI events occurred within two months of anti-TB treatment, indicating that an acute phase reaction may be contributory. The findings also suggest that patients with CKD and hypoalbuminemia maybe more vulnerable to severe and permanent renal damage. After AKI develops, more physicians decide to discontinue pyrazinamide, rather than rifampin, implying that they do not know which of the first-line anti-TB drugs is the most common offending drug for AKI. Continuous medical education on the correct regimen modification is necessary to prevent further renal damage in TB patients with AKI.
In this study, the diagnosis of AKI is not confirmed because renal biopsy was not performed. However, the results of previous studies suggest that even without histology studies, the diagnosis of rifampin-induced AKI can be made based on the typical time course and by excluding other etiologies. In the present study, the medical records were reviewed extensively to exclude other possible causes of AKI like sepsis, hypotension, or use of other nephrotoxic medication. Seven patients had a second AKI episode after rifampin re-challenge, further confirming that rifampin may be the leading cause of AKI.
Re-treatment or re-exposure to rifampin causes repeat antigen exposure, which can lead to a high antibody surge and subsequent severe immune response. This theory is supported by the finding that a high percentage of patients with rifampin-induced AKI are re-treatment cases. However, the findings here are different from previous observations and show that only 11% of AKI patients are re-treatment cases. Rifampin has been successfully re-introduced in 71%. The possible explanation is drug desensitization. Although the rifampicin desensitization protocol varies, success rates (80–82%) of re-introducing rifampin are high in some studies. Further large-scale studies are needed to address whether re-exposure to rifampin is an independent risk factor of developing AKI, and to determine the method of rifampin re-introduction.
The present study has some limitations. First, there is no strong evidence to confirm rifampin as the cause of AKI due to the lack of pathology results. Only seven patients had a second AKI episode after re-challenge rifampin. However, this may not be a serious problem because possible causes other than anti-TB medication have been excluded and AKI due to first-line anti-TB drugs other than rifampin is rarely reported. Second, in this retrospective study, there is no standard protocol of laboratory follow-up for every TB patient during anti-TB treatment. Follow-up depends on the primary care physicians. Patients who did not have any symptoms or signs suggestive for AKI usually had no follow-up data on renal function. Therefore, risk factors of AKI during anti-TB treatment were not identified. Furthermore, asymptomatic patients with AKI may be missed, resulting in lower incidence and recovery rates of AKI. Third, although some characteristics of the study subjects are similar as those of the general TB population in Taiwan, the results here may not be applicable to all TB patients because this is a retrospective study conducted in a medical center.
Discussion
Acute kidney injury is a rare complication in patients on anti-TB therapy. Several reports, summarized in four review articles, address this rare event and most reveal rifampicin as the most common responsible drug. By retrospective analysis of 2322 TB patients, this study has several important findings. First, the incidence of AKI in patients on anti-TB therapy is much higher in Taiwan (7.1%) than in previous reports (0.05%), with a recovery rate of 73% (>80% in literature). Second, rifampin is successfully re-introduced or continued without interruption in 87% of TB patients with AKI recovered. Third, factors predicting recovery from AKI are clinical symptoms at the onset of AKI, including fever, skin rash, and GI disturbance, but not AKI stage, age, and co-morbidities.
The definition of rifampin-induced renal impairment varies in previous studies. The exact incidence rate is unknown. Only the review article from Romania reports that 0.05% of patients receiving rifampin (mean age, 45 years) develop acute renal failure, defined as elevated serum creatinine >44.2 μmol/L or >20% of baseline in two weeks. Using the criteria established by the AKIN, AKI during anti-TB treatment in the current study is not uncommon (7.1%), probably reflecting the old age (mean age, 65.9 years) and high prevalence of systemic co-morbidity, such as DM and CKD, that can predispose to more kidney damage.
The findings that 60% of patients are older than 65 years and 80% have positive mycobacterial culture are similar to the country-wide epidemiologic data reported by the Taiwan Center of Disease Control (TCDC) (age >65 years, 52%; culture-positive rate, 80%), implying that the study subjects here are representative of the whole TB population in Taiwan. With the global trend of aging, determining the local incidence rate of AKI is necessary to improve the quality of TB care and to determine the frequency and duration of monitoring.
The mechanism of rifampin-induced AKI is not well established. Several studies suggest that it is either a type II or type III hypersensitivity reaction induced by rifampin antigens in which anti-rifampin antibodies form immune complexes that are deposited in renal vessels, the glomerular endothelium, and the interstitial area. These reactions cause two different pathologic changes in the kidneys. The deposition of immune complexes in the vessels causes vascular constriction and tubular ischemia, leading to acute tubular necrosis, whereas the deposition of immune complexes in the interstitial area leads to acute interstitial nephritis. Renal biopsies performed in several studies with a total of 106 patients reveal that the most common pathologies are acute interstitial nephritis (54%) and acute tubular necrosis (38%). The immune reaction is indirect proof by the Romania study of a positive correlation between the duration of anuria and serum gamma-globulin level.
In previous studies, more than 80% of patients recover from AKI within 120 days. The recovery rate in the present study (73%) is slightly lower, probably due to the older age and the presence of underlying co-morbidities. Because AKIN stage includes mild renal impairment, some patients who improve their renal function but still fulfill the stage I criteria of AKI may be classified as "unrecovered". One report reveals that age may predict delayed renal function recovery in patients with drug-induced acute interstitial nephritis. However, the present study has different findings. The recovery time of AKI-recovered patients is similar to those of previous reports, with 90% recovery within 100 days. Thus, close monitoring and avoidance of further kidney injury for three-to-four months after the onset of AKI during anti-TB treatment are necessary.
The prognostic factors of AKI during anti-TB treatment are rarely investigated. Only the duration of anuria and leukocytosis have been associated with renal recovery. The current study lacks data on the duration of anuria and few patients (n = 33) underwent urinalysis. After including clinical symptoms, demographic data, and laboratory results into the statistical model, the multivariate Cox regression analysis reveals that the presence of fever, rash, and GI disturbance at the onset of AKI are associated with better renal recovery. Because fever and skin rash are common manifestation of acute interstitial nephritis, the underlying pathophysiology of AKI in patients with these two symptoms is more likely to be acute interstitial nephritis. Since acute interstitial nephritis has better prognosis than acute tubular necrosis, these patients also have better renal recovery. For patients with GI disturbance, AKI may be partly due to dehydration and hypo-perfusion. With careful fluid management, renal impairment may be quickly overcome.
More than 50% of the AKI events occurred within two months of anti-TB treatment, indicating that an acute phase reaction may be contributory. The findings also suggest that patients with CKD and hypoalbuminemia maybe more vulnerable to severe and permanent renal damage. After AKI develops, more physicians decide to discontinue pyrazinamide, rather than rifampin, implying that they do not know which of the first-line anti-TB drugs is the most common offending drug for AKI. Continuous medical education on the correct regimen modification is necessary to prevent further renal damage in TB patients with AKI.
In this study, the diagnosis of AKI is not confirmed because renal biopsy was not performed. However, the results of previous studies suggest that even without histology studies, the diagnosis of rifampin-induced AKI can be made based on the typical time course and by excluding other etiologies. In the present study, the medical records were reviewed extensively to exclude other possible causes of AKI like sepsis, hypotension, or use of other nephrotoxic medication. Seven patients had a second AKI episode after rifampin re-challenge, further confirming that rifampin may be the leading cause of AKI.
Re-treatment or re-exposure to rifampin causes repeat antigen exposure, which can lead to a high antibody surge and subsequent severe immune response. This theory is supported by the finding that a high percentage of patients with rifampin-induced AKI are re-treatment cases. However, the findings here are different from previous observations and show that only 11% of AKI patients are re-treatment cases. Rifampin has been successfully re-introduced in 71%. The possible explanation is drug desensitization. Although the rifampicin desensitization protocol varies, success rates (80–82%) of re-introducing rifampin are high in some studies. Further large-scale studies are needed to address whether re-exposure to rifampin is an independent risk factor of developing AKI, and to determine the method of rifampin re-introduction.
The present study has some limitations. First, there is no strong evidence to confirm rifampin as the cause of AKI due to the lack of pathology results. Only seven patients had a second AKI episode after re-challenge rifampin. However, this may not be a serious problem because possible causes other than anti-TB medication have been excluded and AKI due to first-line anti-TB drugs other than rifampin is rarely reported. Second, in this retrospective study, there is no standard protocol of laboratory follow-up for every TB patient during anti-TB treatment. Follow-up depends on the primary care physicians. Patients who did not have any symptoms or signs suggestive for AKI usually had no follow-up data on renal function. Therefore, risk factors of AKI during anti-TB treatment were not identified. Furthermore, asymptomatic patients with AKI may be missed, resulting in lower incidence and recovery rates of AKI. Third, although some characteristics of the study subjects are similar as those of the general TB population in Taiwan, the results here may not be applicable to all TB patients because this is a retrospective study conducted in a medical center.
Source...