Early Identification of LV Dysfunction in Systemic Sclerosis

109 19
Early Identification of LV Dysfunction in Systemic Sclerosis

Abstract


Background Systemic sclerosis (SSc) is an autoimmune chronic disease characterized by diffuse fibrosis involving several organs, including heart. Aim of our study was to analyze left ventricular (LV) myocardial deformation, by use of 2D strain, in asymptomatic SSc patients with normal LV ejection fraction.

Methods We enrolled 29 SSc patients (28 female, 65±4 years) and 30 controls (23 female, 64±2 years). Echocardiographic study with tissue Doppler imaging (TDI) and 2D strain analysis was performed; moreover, patients were submitted to a two-year follow-up for the occurrence of cardiovascular events.

Results Standard echocardiographic parameters and TDI velocities were comparable between groups. LV longitudinal (LS) and circumferential (CS) strains were lower in patients than in controls (−13.1±4.8 vs −22.6±4.1, p < 0.001; -15.3±6.2 vs −20.4±5.6, p = 0.001), whereas radial strain (RS) was comparable between groups; moreover, a significant correlation of LS and CS with serum levels of Scl-70 antibodies was found (r = 0.74, p = 0.001; r = 0.53, p = 0.025). In addition, patients with cardiovascular events during follow-up showed a greater impairment of LS and CS (−10.3±2.5 vs −14.4±4.1, p = 0.015; -14.2±3.1 vs −20.1±1.6, p = 0.048) and higher values of Scl-70 antibodies serum levels (p = 0.047).

conclusion The impairment of LV function, often subclinical, worsens prognosis of SSc patients, leading to increased risk of cardiovascular complications. 2D strain, allowing the early detection of LV abnormalities and the identification of patients at greater cardiovascular risk, may be a useful tool in order to provide a more accurate management of SSc patients.

Source...
Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.