Delayed Recovery of Spontaneous Circulation Following CPR
Delayed Recovery of Spontaneous Circulation Following CPR
Lazarus syndrome is a rare phenomenon that can be perplexing to the health care provider and brings to question the appropriate timing of the decision to discontinue CPR. It is humbling to know that our medical judgment does not necessarily dictate the fate of a patient in cardiac arrest, and that so much of our understanding is still theoretical. It is also a disturbing reminder that in these cases, so many factors outside our control can lead to serious professional and legal consequences.
Although our patient did not make a meaningful neurologic recovery and died eight hours later, about 45 percent (17 of 38 patients) of documented cases of delayed ROSC did achieve good neurological recovery and 35 percent (14 of 38) were eventually discharged home without any significant neurological sequelae. Our patient's case illustrates that cessation of CPR should be approached with care. One of the tools that may be helpful is capnography. The use of end tidal carbon dioxide measurement during CPR has been included in the most recent revision of the ACLS guidelines, but is still not widely available and practiced. Values above 10 to 15mmHg indicate a favorable prognosis and should preclude cessation of CPR. Also, given that one of the most accepted mechanisms of delayed ROSC is dynamic hyper-inflation, we recommend disconnecting the ventilator as a last ditch effort in patients who are unresponsive to resuscitative efforts.
Our patient's case also demonstrates the need to further examine the potential implications of FES in its relation to the current standards of patient resuscitation. Finally, because delayed ROSC occurred within 10 minutes of cessation of CPR, in most cases when monitors are left connected we recommend passive monitoring for a minimum of 10 minutes following the cessation of CPR.
Conclusions
Lazarus syndrome is a rare phenomenon that can be perplexing to the health care provider and brings to question the appropriate timing of the decision to discontinue CPR. It is humbling to know that our medical judgment does not necessarily dictate the fate of a patient in cardiac arrest, and that so much of our understanding is still theoretical. It is also a disturbing reminder that in these cases, so many factors outside our control can lead to serious professional and legal consequences.
Although our patient did not make a meaningful neurologic recovery and died eight hours later, about 45 percent (17 of 38 patients) of documented cases of delayed ROSC did achieve good neurological recovery and 35 percent (14 of 38) were eventually discharged home without any significant neurological sequelae. Our patient's case illustrates that cessation of CPR should be approached with care. One of the tools that may be helpful is capnography. The use of end tidal carbon dioxide measurement during CPR has been included in the most recent revision of the ACLS guidelines, but is still not widely available and practiced. Values above 10 to 15mmHg indicate a favorable prognosis and should preclude cessation of CPR. Also, given that one of the most accepted mechanisms of delayed ROSC is dynamic hyper-inflation, we recommend disconnecting the ventilator as a last ditch effort in patients who are unresponsive to resuscitative efforts.
Our patient's case also demonstrates the need to further examine the potential implications of FES in its relation to the current standards of patient resuscitation. Finally, because delayed ROSC occurred within 10 minutes of cessation of CPR, in most cases when monitors are left connected we recommend passive monitoring for a minimum of 10 minutes following the cessation of CPR.
Source...