Treatment for Concomitant Cataract and Glaucoma
Treatment for Concomitant Cataract and Glaucoma
Thirty-nine eyes of 39 patients were included into the study. Of these, 20 eyes of 20 patients (51.3%) had phacotrabeculectomy and in 19 eyes of 19 patients (48.7%) phacocanaloplasty was performed.
Patients' characteristics at baseline are summarized in Table 1. No significant difference between the two groups was found for preoperative IOP, age, gender, BCVA, localisation of eye undergoing surgery, type of glaucoma and number of preoperative hypotensive medications. All patients completed the 1-day, 7-day, 4-week, 3-month, 6-month and 12-month follow-up.
At baseline, the mean IOP was 30.0 ± 5.3 mmHg (range 22–39 mmHg) in the phacotrabeculectomy group and 28.3 ± 4.1 mmHg (range 23–37 mmHg) in the phacocanaloplasty group (P = .272). One-way ANOVA for repeated measurements confirmed a highly significant difference between baseline and follow-up within both treatment groups (P < .0001). Mean postoperative IOP was 12.5 ± 6.1 mmHg at 1 month, 13.9 ± 6.4 mmHg at 3 months, 11.9 ± 3.9 mmHg at 6 months and 11.7 ± 3.5 mmHg at 12 months in the phacotrabeculectomy group. Patients in the phacocanaloplasty group had a mean IOP of 14.3 ± 4.2 mmHg at 1 month, 13.5 ± 3.9 mmHg at 3 months, 14.2 ± 4.6 mmHg at 6 months and 12.6 ± 2.1 mmHg at 12 months. Although the extent of IOP reduction was consistently greater in the phacotrabeculectomy group during follow-up, this difference was not statistically significant (Table 2). IOP results of both groups during follow-up are presented in Figure 2 shows the IOP results at 12 month compared to baseline for each patient.
(Enlarge Image)
Figure 1.
Intraocular pressure (IOP) outcomes of phacotrabeculectomy and phacocanaloplasty during follow-up. A highly significant reduction of IOP was found for both groups during follow-up (P < .0001). Except for the first postoperative day, statistical analyses revealed no significant difference for postoperative IOP results between both groups. Box plots illustrate the median (50th percentile) as a black center line and the 25th and 75th percentile as the lower and upper hinges of the box. Circles represent minor outliers and stars major outliers.
(Enlarge Image)
Figure 2.
Scatter plot of preoperative intraocular pressure (IOP) compared to postoperative IOP at the 12-month visit. Each circle indicates a patient. Points below the oblique line define a lower postoperative IOP than baseline.
BCVA was converted to the logarithm of the minimum angle of resolution (logMAR) for statistical analyses. Mean baseline visual acuity was 0.71 ± 0.87 logMAR in the phacotrabeculectomy group and 0.48 ± 0.39 logMAR in the phacocanaloplasty group (P = .835). BCVA was not significantly different between both groups during follow-up. Overall, a mean improvement in visual acuity of 0.19 logMAR in the phacocanaloplasty group and 0.28 logMAR in the phacotrabeculectomy group was seen after 12 months compared to baseline values (Table 3).
Mean number of topical glaucoma medication at the preoperative visit was 2.5 ± 1.2 (range 0 to 4) and 2.8 ± 1.1 (range 0 to 4) in the phacotrabeculectomy and phacocanaloplasty group, respectively. One patient in both groups received only systemic medication at baseline. Preoperatively, 3 patients in the phacotrabeculectomy group and 1 patient in the phacocanaloplasty group needed both systemic and topical IOP-lowering drugs. In the phacocanaloplasty group, the mean number of glaucoma medications was 0.9 ± 1.3 at 6 months and 1.0 ± 1.5 at 12 months. Overall, 7 and 6 patients needed anti-glaucomatous drugs at 6 and 12 months, respectively. In contrast, three patients of the phacotrabeculectomy group were on 1 topical glaucoma drug at 6 months and 4 patients on 1 medication at 12 months. In both treatment groups, the mean number of medications was significantly lower at month 6 and 12 compared to baseline. Mean number of required medication was lower in the phacotrabeculectomy group (Table 4).
In the phacotrabeculectomy group, success rates were 85.0% (17 patients) based on definition 1a (IOP of ≤21 mmHg and at least 30% reduction of IOP) and definition 2a (IOP of less than 18 mmHg) without IOP-lowering drugs (complete success) at 6 months. At 12 months, success rates were 78.9% (15 patients) for both criteria. 10 eyes (58.8%) and 9 eyes (60.0%) of the phacocanaloplasty group achieved complete success for both criteria after 6 and 12 months, respectively. Although the success rate was lower for patients in the phacocanaloplasty group, statistical analyses did not reveal significant differences of complete success at 6 and 12 months (P > .05; Table 5).
Qualified success was achieved by all 19 patients (100%) of the phacotrabeculectomy group and all 15 patients (100%) of the phacocanaloplasty group having an IOP of less than 18 mmHg, or ≤21 mmHg and at least a 30% reduction of IOP after 12 months (P =1.000). There was no statistically significant difference in qualified success found between both groups (Table 5). Kaplan-Meier survival plots for cumulative probability rates of success defined as an IOP of less than 18 mmHg are shown in Figure 3.
(Enlarge Image)
Figure 3.
Kaplan-Meier survival plot for cumulative probability of complete success. Success was defined as an intraocular pressure (IOP) of less than 18 mmHg without glaucoma medication (complete success). Censored data occurred if a patient completed the 12-month visit and maintained an IOP of less than 18 mmHg without glaucoma medication over 12 months. In the phacocanaloplasty group, the line starts below 1.0 because 2 patients developed a filtering bleb in the early postoperative period and were countered as a failure.
The incidence of complications following phacotrabeculectomy and phacocanaloplasty are shown in Table 6.
In the phacocanaloplasty group, one patient (5.3%) had an intraoperative perforation of the trabeculo-Descemet membrane. 360° dilation and insertion of a suture into Schlemm canal was successful in all patients with phacocanaloplasty. In one case of the phacotrabeculectomy group, anterior vitrectomy had to be performed and an iris claw lens was placed (5.0%). During the early postoperative period (≤ 90 days), there was less hypotony, defined as IOP of <5 mmHg, in the phacocanaloplasty group than in the phacotrabeculectomy group. Transient hypotony was seen in 3 patients (15.0%) in the phacotrabeculectomy group and in none of the eyes in the phacocanaloplasty group (P = .231). Choroidal detachment occurred in 2 patients (10.0%) with phacotrabeculectomy and in none of the phacocanaloplasty group (P = .487). Hyphema was observed in 4 patients (21.1%) of the phacocanaloplasty group and in 1 patients (5.0%) of the phacotrabeculectomy group (P = .182). During the late postoperative period (> 90 days), 1 patient (5.0%) of the phacotrabeculectomy group had an IOP of less than 5 mmHg and choroidal detachment due to a conjunctival leakage. Two patients (10.5%) with phacocanaloplasty were reported to have a filtering bleb. Postsurgical complications were not found to be significantly different between both groups.
Table 7 summarizes the postoperative interventions for both treatment groups, bleb management following phacotrabeculectomy and required procedures at the trabeculo-Descemet window in the phacocanaloplasty group.
In the phacotrabeculectomy group, laser suture lysis was performed in 10 eyes (50.0%) for patients with increased IOP and flat filtering blebs, which inflated after ocular massage. Subconjunctival injections of 5-FU were repeatedly given in 16 patients of the phacotrabeculectomy group (80.0%; 6.2 ± 3.7 injections of 5-FU, Range 0–10). We additionally applied subconjunctival injections of anti-VEGF in the early postoperative period. In 3 cases (15.0%) of expected increased and rapid bleb scarring, anti-VEGF was given once before starting 5-FU. Bleb needling became necessary in 3 patients (15.0%) of the phacotrabeculectomy group. Nd:YAG goniopuncture of the Descemet window was performed in 2 patients (10.5%) of the phacocanaloplasty group. Further IOP-lowering procedures included cyclodestructive surgeries in 1 patient (5.0%) of the phacotrabeculectomy group and 2 patients (10.5%) of the phacocanaloplasty group (P = .605). No statistically significant difference in postsurgical interventions was found between the two groups.
Results
Baseline Data
Thirty-nine eyes of 39 patients were included into the study. Of these, 20 eyes of 20 patients (51.3%) had phacotrabeculectomy and in 19 eyes of 19 patients (48.7%) phacocanaloplasty was performed.
Patients' characteristics at baseline are summarized in Table 1. No significant difference between the two groups was found for preoperative IOP, age, gender, BCVA, localisation of eye undergoing surgery, type of glaucoma and number of preoperative hypotensive medications. All patients completed the 1-day, 7-day, 4-week, 3-month, 6-month and 12-month follow-up.
Intraocular Pressure Results
At baseline, the mean IOP was 30.0 ± 5.3 mmHg (range 22–39 mmHg) in the phacotrabeculectomy group and 28.3 ± 4.1 mmHg (range 23–37 mmHg) in the phacocanaloplasty group (P = .272). One-way ANOVA for repeated measurements confirmed a highly significant difference between baseline and follow-up within both treatment groups (P < .0001). Mean postoperative IOP was 12.5 ± 6.1 mmHg at 1 month, 13.9 ± 6.4 mmHg at 3 months, 11.9 ± 3.9 mmHg at 6 months and 11.7 ± 3.5 mmHg at 12 months in the phacotrabeculectomy group. Patients in the phacocanaloplasty group had a mean IOP of 14.3 ± 4.2 mmHg at 1 month, 13.5 ± 3.9 mmHg at 3 months, 14.2 ± 4.6 mmHg at 6 months and 12.6 ± 2.1 mmHg at 12 months. Although the extent of IOP reduction was consistently greater in the phacotrabeculectomy group during follow-up, this difference was not statistically significant (Table 2). IOP results of both groups during follow-up are presented in Figure 2 shows the IOP results at 12 month compared to baseline for each patient.
(Enlarge Image)
Figure 1.
Intraocular pressure (IOP) outcomes of phacotrabeculectomy and phacocanaloplasty during follow-up. A highly significant reduction of IOP was found for both groups during follow-up (P < .0001). Except for the first postoperative day, statistical analyses revealed no significant difference for postoperative IOP results between both groups. Box plots illustrate the median (50th percentile) as a black center line and the 25th and 75th percentile as the lower and upper hinges of the box. Circles represent minor outliers and stars major outliers.
(Enlarge Image)
Figure 2.
Scatter plot of preoperative intraocular pressure (IOP) compared to postoperative IOP at the 12-month visit. Each circle indicates a patient. Points below the oblique line define a lower postoperative IOP than baseline.
Visual Acuity Results
BCVA was converted to the logarithm of the minimum angle of resolution (logMAR) for statistical analyses. Mean baseline visual acuity was 0.71 ± 0.87 logMAR in the phacotrabeculectomy group and 0.48 ± 0.39 logMAR in the phacocanaloplasty group (P = .835). BCVA was not significantly different between both groups during follow-up. Overall, a mean improvement in visual acuity of 0.19 logMAR in the phacocanaloplasty group and 0.28 logMAR in the phacotrabeculectomy group was seen after 12 months compared to baseline values (Table 3).
Change in Glaucoma Medication
Mean number of topical glaucoma medication at the preoperative visit was 2.5 ± 1.2 (range 0 to 4) and 2.8 ± 1.1 (range 0 to 4) in the phacotrabeculectomy and phacocanaloplasty group, respectively. One patient in both groups received only systemic medication at baseline. Preoperatively, 3 patients in the phacotrabeculectomy group and 1 patient in the phacocanaloplasty group needed both systemic and topical IOP-lowering drugs. In the phacocanaloplasty group, the mean number of glaucoma medications was 0.9 ± 1.3 at 6 months and 1.0 ± 1.5 at 12 months. Overall, 7 and 6 patients needed anti-glaucomatous drugs at 6 and 12 months, respectively. In contrast, three patients of the phacotrabeculectomy group were on 1 topical glaucoma drug at 6 months and 4 patients on 1 medication at 12 months. In both treatment groups, the mean number of medications was significantly lower at month 6 and 12 compared to baseline. Mean number of required medication was lower in the phacotrabeculectomy group (Table 4).
Success Rate
In the phacotrabeculectomy group, success rates were 85.0% (17 patients) based on definition 1a (IOP of ≤21 mmHg and at least 30% reduction of IOP) and definition 2a (IOP of less than 18 mmHg) without IOP-lowering drugs (complete success) at 6 months. At 12 months, success rates were 78.9% (15 patients) for both criteria. 10 eyes (58.8%) and 9 eyes (60.0%) of the phacocanaloplasty group achieved complete success for both criteria after 6 and 12 months, respectively. Although the success rate was lower for patients in the phacocanaloplasty group, statistical analyses did not reveal significant differences of complete success at 6 and 12 months (P > .05; Table 5).
Qualified success was achieved by all 19 patients (100%) of the phacotrabeculectomy group and all 15 patients (100%) of the phacocanaloplasty group having an IOP of less than 18 mmHg, or ≤21 mmHg and at least a 30% reduction of IOP after 12 months (P =1.000). There was no statistically significant difference in qualified success found between both groups (Table 5). Kaplan-Meier survival plots for cumulative probability rates of success defined as an IOP of less than 18 mmHg are shown in Figure 3.
(Enlarge Image)
Figure 3.
Kaplan-Meier survival plot for cumulative probability of complete success. Success was defined as an intraocular pressure (IOP) of less than 18 mmHg without glaucoma medication (complete success). Censored data occurred if a patient completed the 12-month visit and maintained an IOP of less than 18 mmHg without glaucoma medication over 12 months. In the phacocanaloplasty group, the line starts below 1.0 because 2 patients developed a filtering bleb in the early postoperative period and were countered as a failure.
Incidence of Postsurgical Complications
The incidence of complications following phacotrabeculectomy and phacocanaloplasty are shown in Table 6.
In the phacocanaloplasty group, one patient (5.3%) had an intraoperative perforation of the trabeculo-Descemet membrane. 360° dilation and insertion of a suture into Schlemm canal was successful in all patients with phacocanaloplasty. In one case of the phacotrabeculectomy group, anterior vitrectomy had to be performed and an iris claw lens was placed (5.0%). During the early postoperative period (≤ 90 days), there was less hypotony, defined as IOP of <5 mmHg, in the phacocanaloplasty group than in the phacotrabeculectomy group. Transient hypotony was seen in 3 patients (15.0%) in the phacotrabeculectomy group and in none of the eyes in the phacocanaloplasty group (P = .231). Choroidal detachment occurred in 2 patients (10.0%) with phacotrabeculectomy and in none of the phacocanaloplasty group (P = .487). Hyphema was observed in 4 patients (21.1%) of the phacocanaloplasty group and in 1 patients (5.0%) of the phacotrabeculectomy group (P = .182). During the late postoperative period (> 90 days), 1 patient (5.0%) of the phacotrabeculectomy group had an IOP of less than 5 mmHg and choroidal detachment due to a conjunctival leakage. Two patients (10.5%) with phacocanaloplasty were reported to have a filtering bleb. Postsurgical complications were not found to be significantly different between both groups.
Bleb Management and Postsurgical Interventions
Table 7 summarizes the postoperative interventions for both treatment groups, bleb management following phacotrabeculectomy and required procedures at the trabeculo-Descemet window in the phacocanaloplasty group.
In the phacotrabeculectomy group, laser suture lysis was performed in 10 eyes (50.0%) for patients with increased IOP and flat filtering blebs, which inflated after ocular massage. Subconjunctival injections of 5-FU were repeatedly given in 16 patients of the phacotrabeculectomy group (80.0%; 6.2 ± 3.7 injections of 5-FU, Range 0–10). We additionally applied subconjunctival injections of anti-VEGF in the early postoperative period. In 3 cases (15.0%) of expected increased and rapid bleb scarring, anti-VEGF was given once before starting 5-FU. Bleb needling became necessary in 3 patients (15.0%) of the phacotrabeculectomy group. Nd:YAG goniopuncture of the Descemet window was performed in 2 patients (10.5%) of the phacocanaloplasty group. Further IOP-lowering procedures included cyclodestructive surgeries in 1 patient (5.0%) of the phacotrabeculectomy group and 2 patients (10.5%) of the phacocanaloplasty group (P = .605). No statistically significant difference in postsurgical interventions was found between the two groups.
Source...