18F-FDG Uptake of Knee Joints in Age-Related OA
18F-FDG Uptake of Knee Joints in Age-Related OA
OA is usually characterized by painful joints, which may accompany subchondral sclerosis, joint space narrowing, and osteophytosis in association with cartilage degeneration. These changes may lead to joint destruction, loss of joint function, and joint failure. Aging is the most important risk factor for primary OA not caused by injury or disease, and almost 80% of people older than 75 years of age present with OA, one of the most commonly occurring diseases in the elderly. However, it remains unclear what occurs in the joints with aging and how aging affects the joints and elicits OA.
Regarding the pathogenesis of OA, it is generally accepted that if physical stress to a joint is sufficient to denature articular cartilage matrix, synthesis of proteoglycans and collagen decreases, making the joint vulnerable to stress. As cartilage wears out, increased stress to the joint may lead to development of a micro-fracture in the subchondral bone. Healing processes following micro-fracture result in bony sclerosis and stiffness, compromising capacity to resolve stress. In a vicious manner, the insulted joints fall into irreversible progression to overt OA. However, metabolic alterations in cartilage may be associated with vulnerability of the joint to stress in primary OA, and certain cellular processes that occur during aging may contribute to development of OA.
F-FDG is one of the most popular radiopharmaceuticals used for PET scans and F-FDG uptake has been reported to be highly sensitive in detection of metabolic alterations in some skeletal disorders. Intra-articular SUVmax and joint-SUVmean of F-FDG on PET/CT were measured and calculated at knees for determination of metabolic changes of the joints in association with aging, grade of bony changes, and presence of clinico-laboratory and radiological knee OA, as defined by the American College of Rheumatology (ACR).
Background
OA is usually characterized by painful joints, which may accompany subchondral sclerosis, joint space narrowing, and osteophytosis in association with cartilage degeneration. These changes may lead to joint destruction, loss of joint function, and joint failure. Aging is the most important risk factor for primary OA not caused by injury or disease, and almost 80% of people older than 75 years of age present with OA, one of the most commonly occurring diseases in the elderly. However, it remains unclear what occurs in the joints with aging and how aging affects the joints and elicits OA.
Regarding the pathogenesis of OA, it is generally accepted that if physical stress to a joint is sufficient to denature articular cartilage matrix, synthesis of proteoglycans and collagen decreases, making the joint vulnerable to stress. As cartilage wears out, increased stress to the joint may lead to development of a micro-fracture in the subchondral bone. Healing processes following micro-fracture result in bony sclerosis and stiffness, compromising capacity to resolve stress. In a vicious manner, the insulted joints fall into irreversible progression to overt OA. However, metabolic alterations in cartilage may be associated with vulnerability of the joint to stress in primary OA, and certain cellular processes that occur during aging may contribute to development of OA.
F-FDG is one of the most popular radiopharmaceuticals used for PET scans and F-FDG uptake has been reported to be highly sensitive in detection of metabolic alterations in some skeletal disorders. Intra-articular SUVmax and joint-SUVmean of F-FDG on PET/CT were measured and calculated at knees for determination of metabolic changes of the joints in association with aging, grade of bony changes, and presence of clinico-laboratory and radiological knee OA, as defined by the American College of Rheumatology (ACR).
Source...