Pediatric Second-Degree Atrioventricular Block Medication: Beta-adrenergic agonists, Anticholinergic
Medication Summary
In general, patients with second-degree atrioventricular (AV) block with symptomatic bradycardia may be medicated with intravenous isoproterenol or atropine acutely. However, these agents must be administered in a hospital setting with cardiac monitoring available. Patients with Mobitz I (Wenckebach) AV block secondary to increased vagal tone may respond to theophylline, glycopyrrolate, or scopolamine. Pacemaker therapy is required when medications fail to control symptoms.
Beta-adrenergic agonists
Class Summary
Isoproterenol has beta1-adrenergic and beta2-adrenergic receptor activity. It binds beta receptors of the heart, smooth muscle of bronchi, skeletal muscle, vasculature, and alimentary tract. Isoproterenol has positive inotropic and chronotropic actions.
Isoproterenol (Isuprel)
Isoproterenol is usually given as a continuous intravenous infusion for rate support. It is usually administered as a temporizing measure, initiated during the organization of temporary or permanent pacing system placement for symptomatic patients with bradycardia from heart block or sinus node disease.
Anticholinergics
Class Summary
The goal of anticholinergic therapy is to improve AV node conduction by reducing vagal tone via the muscarinic receptor blockade. This is effective only if the site of a block is within the AV node. Anticholinergic therapy is ineffective for patients with infranodal block.
Atropine
Atropine is administered to increase heart rate through vagolytic effects, causing an increase in cardiac output.
M Silvana Horenstein, MD Assistant Professor, Department of Pediatrics, University of Texas Medical School at Houston; Medical Doctor Consultant, Legacy Department, Best Doctors, Inc
M Silvana Horenstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Medical Association
Coauthor(s)
Robert Murray Hamilton, MD, MSc, FRCPC Electrophysiologist, Senior Associate Scientist, Physiology and Experimental Medicine, Labatt Family Heart Centre; Professor, Department of Pediatrics, University of Toronto Faculty of Medicine
Robert Murray Hamilton, MD, MSc, FRCPC is a member of the following medical societies: American Heart Association, Canadian Medical Association, Ontario Medical Association, Royal College of Physicians and Surgeons of Canada, Canadian Medical Protective Association, Heart Rhythm Society, Canadian Cardiovascular Society, Cardiac Electrophysiology Society, Pediatric and Congenital Electrophysiology Society, Society for Pediatric Research
Chief Editor
Steven R Neish, MD, SM Director of Pediatric Cardiology Fellowship Program, Associate Professor, Department of Pediatrics, Baylor College of Medicine
Steven R Neish, MD, SM is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association
Acknowledgements
Charles I Berul, MD Professor of Pediatrics and Integrative Systems Biology, George Washington University School of Medicine; Chief, Division of Cardiology, Children's National Medical Center
Charles I Berul, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, Cardiac Electrophysiology Society, Heart Rhythm Society, Pediatric and Congenital Electrophysiology Society, and Society for Pediatric Research
Disclosure: Johnson & Johnson Consulting fee Consulting
Alvin J Chin, MD Professor of Pediatrics, University of Pennsylvania School of Medicine; Attending Physician, Cardiology Division, Children's Hospital of Philadelphia
Alvin J Chin, MD, is a member of the following medical societies: American Association for the Advancement of Science, American Heart Association, and Society for Developmental Biology
Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference
Disclosure: Nothing to disclose.
References
- Berdajs D, Schurr UP, Wagner A, Seifert B, Turina MI, Genoni M. Incidence and pathophysiology of atrioventricular block following mitral valve replacement and ring annuloplasty. Eur J Cardiothorac Surg. 2008 May 14. [Medline].
- Suda K, Raboisson MJ, Piette E, Dahdah NS, Miro J. Reversible atrioventricular block associated with closure of atrial septal defects using the Amplatzer device. J Am Coll Cardiol. 2004 May 5. 43(9):1677-82. [Medline].
- Khongphatthallayothin A, Chotivitayatarakorn P, Somchit S. Morbitz type I second degree AV block during recovery from dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health. 2000 Dec. 31(4):642-5. [Medline].
- Costedoat-Chalumeau N, Georgin-Lavialle S, Amoura Z, Piette JC. Anti-SSA/Ro and anti-SSB/La antibody-mediated congenital heart block. Lupus. 2005. 14(9):660-4. [Medline].
- Chang YL, Hsieh PC, Chang SD. Perinatal outcome of fetus with isolated congenital second degree atrioventricular block without maternal anti-SSA/Ro-SSB/La antibodies. Eur J Obstet Gynecol Reprod Biol. 2005 Oct 1. 122(2):167-71. [Medline].
- Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, et al. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab. 2004 Nov. 89(11):5337-46. [Medline].
- Payne CE, Usher BW. Atrioventicular block in familial amyloidosis; revisiting an old debate. J S C Med Assoc. 2007 Jun. 103(5):119-22. [Medline].
- Cui G, Kobashigawa J, Margarian A. Cause of atrioventricular block in patients after heart transplantation. Transplantation. 2003 Jul 15. 76(1):137-42. [Medline].
- Niwa K, Warita N, Sunami Y. Prevalence of arrhythmias and conduction disturbances in large population-based samples of children. Cardiol Young. 2004 Feb. 14(1):68-74. [Medline].
- Massin MM, Bourguignont A, Gérard P. Study of cardiac rate and rhythm patterns in ambulatory and hospitalized children. Cardiology. 2005. 103(4):174-9. [Medline].
- Zhao H, Cuneo BF, Strasburger JF, Huhta JC, Gotteiner NL, Wakai RT. Electrophysiological characteristics of fetal atrioventricular block. J Am Coll Cardiol. 2008 Jan 1. 51(1):77-84. [Medline].
- Nagashima M, Matsushima M, Ogawa A, et al. Cardiac arrhythmias in healthy children revealed by 24-hour ambulatory ECG monitoring. Pediatr Cardiol. 1987. 8(2):103-8. [Medline].
- Fernandez P, Corfield VA, Brink PA. Progressive familial heart block type II (PFHBII): a clinical profile from 1977 to 2003. Cardiovasc J S Afr. 2004 May-Jun. 15(3):129-32. [Medline].
- Richter S, Muessigbrodt A, Salmas J, Doering M, Wetzel U, Arya A, et al. Ventriculoatrial conduction and related pacemaker-mediated arrhythmias in patients implanted for atrioventricular block: an old problem revisited. Int J Cardiol. 2013 Oct 9. 168(4):3300-8. [Medline].
- Horigome H, Nagashima M, Sumitomo N, et al. Clinical characteristics and genetic background of congenital long-QT syndrome diagnosed in fetal, neonatal, and infantile life: a nationwide questionnaire survey in Japan. Circ Arrhythm Electrophysiol. 2010 Feb 1. 3(1):10-7. [Medline].
- Ruffatti A, Milanesi O, Chiandetti L, et al. A combination therapy to treat second-degree anti-ro/la-related congenital heart block. a strategy to avoid stable third-degree heart block?. Lupus. 2011 Dec 20. [Medline].
- Wilkoff BL, Auricchio A, Brugada J, et al. HRS/EHRA Expert Consensus on the Monitoring of Cardiovascular Implantable Electronic Devices (CIEDs): description of techniques, indications, personnel, frequency and ethical considerations: developed in partnership with the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA); and in collaboration with the American College of Cardiology (ACC), the American Heart Association (AHA), the European Society of Cardiology (ESC), the Heart Failure Association of ESC (HFA), and... Europace. 2008 Jun. 10(6):707-25. [Medline].
A common pattern of second-degree atrioventricular (AV) block consists of gradual prolongation of the PR interval leading up to a nonconducted P wave; this pattern is known as Wenckebach AV block, or Mobitz I AV block. This rhythm strip is an example of classic Mobitz I, or Wenckebach, AV block, in which the PR interval prolongs by sequentially smaller increments, with consequent shortening of the RR intervals until the blocked beat occurs. However, classic Wenckebach block is present in only a minority of cases. Wenckebach block is most easily diagnosed by comparing the PR interval following the blocked beat with the PR interval preceding the blocked beat; if the PR interval shortens following the blocked beat, the block is most likely of the Wenckebach type.
If the PR interval fails to shorten following a blocked beat, non-Wenckebach AV block (or Mobitz II AV block) is said to be present. This block is usually located more distally in the His bundle or the His bundle branches, or both, and the escape rates are usually slower and less stable.